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THE GAUSS OPTIMIZATION METHOD FOR PROBLEMS WITH 
GENERAL NONLINEAR CONSTRAINTS 

T. E. Potter*, K. D. Willmert** and M. Sathyamoorthy** 

(Received November 2, 1987) 

A new algorithm is presented for finding the minimum of a nonnegative objective function subject to general nonlinear 
constraints. This algorithm, based of Gauss' method for unconstrained problems, is developed as an extension to the Gauss 
constrained technique for linear constraints. The derivation of the algorithm, using a Lagrange multiplier approach, is based on 
the Kuhn-Tucker conditions so that, when the iteration process terminates, these conditions are automatically satisfied. A feasible 
design is maintained throughout the iteration process. The solution of preliminary examples indicate excellent results in terms of 
the number of objective function evaluations required by the algorithm to obtain an optimal design. 
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1. I N T R O D U C T I O N  

The optimal design of many complex structural and 
mechanical systems is hindered by the large computational 
times involved. Most currently available optimization tech- 
niques require a large number of analyses to obtain the 
optimal design. For small problems, or ones in which the 
analysis is simple, these methods are adequate ; however, for 
large problems, or where a time consuming analysis is requir- 
ed, more efficient optimization methods are needed. The goal 
of this research was to develop such methods, particularly 
techniques applicable to mechanical mechanism design where 
the members are deforming because of high speed motion and 
large external forces. Computational times to perform an 
analysis are enormous for problems of this type where large 
deformations are occurring involving nonlinear material 
characteristics. Thus the goal of the methods developed was 
to reduce the number of analyses, even at the expense of 
increased computational effort in the optimization technique 
itself, i. e. additional effort in finding new candidate design 
points to analyze. 

The methods generated in this research take advantage of 
the special characteristics of the optimization problem, simi- 
lar to optimality criterion techniques. This greatly improves 
their efficiency. For most mechanism design problems, the 
objective function can be formulated as a sum of squared 
quantities such as the difference between the desired perfor- 
mance and the actual performance of the mechanism at 
specified points during its motion. Thus the techniques were 
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developed specifically to handle problems of this type, 
although the methods are applicable to objective functions 
which are general sums of nonnegative quantities, such as 
weight. Many mechanism problems have constraints which 
are only linear functions of the design variables. Thus a 
special method was developed for problems of this type. 
Other problems have constraints which are linear or qua- 
dratic, and another method was developed for this case. Some 
mechanism design problems have more general nonlinear 
constraints. Methods to handle these cases are currently 
being investigated. 

All of the techniques developed in this work have been 
based on Gauss' method (Himmelblau, 1972) which is appli- 
cable to problems without constraints. Wilde (1981) has 
shown this method to be particularly efficient on simple 
mechanism design problems. The research presented in this 
paper has extended this method to handle various types of 
constraints common to more complex mechanisms. 

2. F O R M U L A T I O N  

For an unconstrained sum-of-squares objective functions 

I(:) = 7 "  ~ ,  (:> 

where r  is a vector of linear or nonl inear  funct ions r 
thru ~p in ~ ,  the Gauss method for calculating the next 
iteration of the design variables, x ,+,, given a current design, 
x , ,  is 

~ ' , .  = ~ , -  b, ( 7 , ) ]  T (~,,)]-, ] ( :~ , ) -~(7 , ) ,  (2) 

where 

] (7)  = v r (7)  -.. v r  :: v ~ ' .  (3) 
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It is observed that only first derivatives of the r functions are 
required and that the new design point is calculated directly 
from the current design without using a step length determi- 
nation with associated one dimensional minimization. Him- 
melblau (1972) has shown this method to be very efficient for 
unconstrained minimization problems. 

This technique has been extended to handle linear inequal- 
ity constraints of the form 

g,(~')=TJ-X'-c,<-o, i=l,.. . ,M (4) 

as well as equality constraints 

h,(~ ' )=~,r~' -e~=O, i=l,...,L. (5) 

In the derivation of the optimization method, the r functions 
are assumed to be linear in ~ '  of the form 

-~' = j r ' -~+~ ' .  (6) 

where J is a constant matrix.  However the resulting tech- 
nique is applicable to problems in which the O's  are general 
nonlinear functions of ~ ' .  

At i teration k, the L equality constriants and any of the 
inequality constraints that are active can be combined and 
written in the form 

B G ' - ~ = 0 .  (7) 

If at the next iteration, k + l ,  the variables -~+, are at the 
optimum design, then the Kuhn-Tucker conditions will be 
satisfied 

----+ _ _ +  

v f (  x ,,+,) + B  A =0 (8) 

B r x k , , - - K = 0  (9) 

and 

A ~0 (10) 

where ~ is a vector of Lagrange multipliers. The gradient of 
f is given by 

V f (  x ) = 2J~b~ ( ~ ) .  (11) 

Expanding r  in a Taylor  series results in 

+ (higher order terms) (12) 

It is noted that the higher order terms are equal to zero if r  
is linear. If r  is not linear then these terms will be neglected 
and the expansion is only approximate.  If Eq. (12) is substitut- 
ed into Eq. (11), and evaluated at x-'k+,, the result is 

V f(x-~k+,) = 2 J  [r (x'k) +Jr['~,+,--~k]]. (13) 

condition, Eq. (9), yields 

B r ~ , -  C -  B r [2]./r]-~ [2 J r  + B ~ ] = 0 .  (15) 

If the same set of constraints that are active at xk+, were also 
active at ~ k ,  then B r - ~ - ~ = 0 .  Using this result, Eq. (15) 
can be solved for -~ producting 

-A= -[B[2JJ r] 'B] -~ Br[2jjr] -~ 2J--r  (16) 

Substituting this back into Eq. (14) and simplifying yields an 
iterative expression for ~c~+, which will give the optimum 
solution in one iteration if the constraints that are active at 
the optimum point (iteration k+  1) are active at iteration k 

7+4+, =~k- [ I -  ~J~J-' B[Br[JJ r l - ' B ] - ' B r ]  
[ . / j r ] - ,  J ~ ( x  ,). (17) 

This expression is equivalent to that derived by Paradis  
and Willmert  (1983) using a Gradient Projection method as a 
foundation. The technique converges to the optimal design in 
one iteration if the objective function, f ,  is quadratic and the 
starting point is on the constraints which are active at the 
optimal design. Ii f is not quadratic, the technique can still be 
applied, but it will generally require several iterations to 
reach the optimal design. When the technique terminates, the 
Kuhn-Tucker conditions will be satisfied independent of the 
form of the objective function. 

Paradis  and Willmert  deminstrated the efficiency of this 
method by solving several examples. One example presented 
was the optimal design of a four-bar mechanism to generate 
a desired coupler point path. The Gauss constrained tech- 
nique was compared with the Davidon-Fletcher-Powell 
method using an interior penalty function approach to handle 
constraints. Using four different starting points, the Gauss 
constrained method required from 23 to 33 ob)ective function 
evaluations whereas the Davidon-Fletcber-Powell method 
required from 209 to 622. While not all starting points yielded 
the same optimal design, b o t h  methods reached the same 
local minimum from each starting point. Other examples also 
showed considerable improvement over existing methods. 

The Gauss method has recently been extended to include 
quadratic inequality constraints or quadratic approximations 
to higher order nonlinear constraints. In this work the con- 
straints are assumed to have the form 

g,(~) = l x  ' r  A , ~ + - f f , r ; - c , ~ o ,  i=l,"' ,M. (18) 

If at iteration k +  1 there are r active constraints (r  K M), the 
Kuhn-Tucker conditions will be 

V f ( ~ ' k . 1 ) + ~  [A~k+,+~j]As=O (19) 
j = ,  

~ x  k+,A,x ,+I+BJx k+,--C~=O, j=l,. . . ,  r (20) 

This may be substituted into the first Kuhn-Tucker condition, 
Eq. (8), and then solved for x'k§ 

~ . ,  :-xk-- [2JJ r] ~ [2Jr (~-~) +BT].  (14) 

Plugging this equation for x k+~ into the second Kuhn-Tucker 

and 

7 ' > 0  (21) 

where the summation in Eq. (19) and the j subscript in Eq. (20) 
refer to the set of active constraints only. 
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Using a derivation similar to that for linear constraints, 
substituting the expression for the gradient of f ,  Eq. (13), into 
the first Kuhn-Tucker condition, Eq. (19), and solving for 
xk., produces 

2 x ]_1 --* r +  x k+l= J J  A~A~ 
j = l  

2JJ x ~ -  V f (xD -s~_.IB . (22) 

This expression for x k+l in terms of -~ is now substituted 
into the second Kuhn-Tucker condition, Eq. (20), to obtain 

I  ,-Jl 2JJ X k - - V f ( x k )  ~=1 

2JJ x k-- 

- C , = O ,  i=1,. . . ,  r. (23) 

These r nonlinear equations in terms of the unknowns, A1, 
thru A~, and the old values of the design variables, x k, are 
solved by an iterative process for the values of/11 thru A~. The 
lambda values are then substituted into Eq. (22) which will 
yield new values for the design variables. It is observed that 
the matrix 2J J r  is the matrix of second partial derivatives, 
G, of the objective function if it is quadratic. Thus, by replac- 
ing 2JJ r in Eq. (22) and (23), this technique becomes a 
modification of the second order method rather than the 
Gauss method. 

At the optimum design, all constraints will either be satis- 
fied (less than zero) or active (equal to zero) and each active 
constraint will have a corresponding lambda whose value is 
greater than or equal to zero. If, at some iteration, the set of 
design variables yields a violated constraint, then obviously 
the optimum point has not been reached, in this case, the 
newly violated constraint is added to the set of active con- 
straints and the procedure allowed to continue. If at some 
iteration, the set of design variables yields all active or 
satisfied constraints, but one or more of the active constraints 
has a corresponding negative lambda, then the optimum 
design has also not been reached. The negative lambda 
implies that the iteration process would like to move away 
from the corresponding constraint boundary toward the fea- 
sible region where the constraint is satisfied. Thus, the con- 
straint is dropped from the set of active constraints and the 
process allowed to continue. If more than one negative 
lambda existed, then constraints are dropped one at a time 
starting with the constraint with the most negative lambda. 

A constraint is added to the set of active constraints if it 
should become either active (equal to zero) or violated 
(greater than zero) when the step is taken from x ,  to x ~, ~. 
In the case where a constraint becomes violated, a line is 

"drawn" between -X~, and xk+l and the actual step is taken to 
the farthest point along the line so that no constraints are 
violated. In effect, this procedure is the same as stepping back 
from x ,§ toward x k until the newly violated constraint is 
just active (equal to zero). The constraint is the added to the 
set of active constraints for the next iteration. 

An example problem with quadratic constraints given by 
Boston, Willmert and Sathyamoorthy (1984) shows this 
method to be very efficient when compared to the generalized 
reduced gradient method (GRG). The problem consisted of 
finding the optimal design of a four-bar mechanism (minimiz- 
ing the error between the actual coupler point path and a 
given path) subject to several linear constraints on link length 
and movability. Additionally, constraints were placed on the 
crank pin to limit its location to the intersection of two 
circular (quadratic) regions. The program was run for a four 
by four matrix of problems which included four different 
starting points and four different conditions on the quadratic 
constraints. For all sixteen runs, the number of objective 
function evaluations for this new method ranged from 8 to 32 
(average was 15), while the GRG method required from 303 to 
699 (average was 502) evaluations. 

The interesting information here is that the solution to this 
quadratically constrained four-bar mechanism problem used 
no more objective function evaluations than the linearly 
constrained four-bar mechanism example considered by 
Paradis and Willmert. While these two examples are neces- 
sarily different, this tendency toward requiring similar num- 
bers of function evaluations for different classes of problems 
is very desirable. The net result is that we now have an 
optimization procedure for objective functions which are the 
sum of squared quantities, subject to linear and quadratic 
constraints that not only requires relatively few function 
evaluations, but seems to be constraint order independent. 
Now the need is to develop a method which will also work for 
higher order constraints. 

Boston, et al. (1984) attempted to apply this method to 
higher order problems, but met with mixed results. The 
problems encountered seemed to be caused by the higher 
order constraints rather than with the higher order objective 
functions. There are several limitations implicit in the algor- 
ithm which appear to be the source of the problems en- 
countered. The first limitation has to do with the application 
of the constraints, Eq. (18), to the first Kuhn-Tucker condi- 
tion, Eq. (19). When approximating a higher order function by 
a quadratic Taylor series expansion about some point x'0, not 
only is theA~ matrix a functin of-X'o, but so is the B'~ vector 
and the C, scalar. Thus the constraint approximation, Eq. 
(18), should be written as 

g i ( x ) ~ x -  A ~ ( x o ) x  + [ B , ( x o l ]  T x - C , ( x o ) < - O ,  

i = 1,..-, M (24) 

where 

x = Xo+ a x .  (25) 

As x '  approaches x'0 (or A x approaches 0), this approxima- 
tion approaches the exact value of the constraint. Thus as the 
algorithm progresses along and constraints are added and 
dropped, the constraints must be reapproximated at the latest 
design to keep the step size small. This can be achieved by 
taking the new values of x* as generated by Eq. (22) and 



170 T. E. Potter, K. 1). Willmert and M. Sathyamoorthy 

substituting them into the actual constraint equations to get 
improved values for the A , ( - ~  0), B' , (x '  0) and C,(x  -~ 0) 
terms in Eq. (24) with resspect to the current design point. 

The second limitation involves the second Kuhn-Tucker 
condition, Eq. (20), which is used to obtain the equation for 
the new values of A', Eq. (23). This is simply the equation for 
the active constraints. In the original formulation, an attempt 
was made at obtaining a linear approximation in A' for this 
constraint equation. This would allow Eq. (23). This is simply 
the equation for the active constraints. In the original formu- 
lation, an attempt was made at obtaining a linear approxima- 
tion in -A for this constraint equation. This would allow Eq. 
(23) to be solved explicitly for A'. However, failing this, an 
iterative procedure was employed to find the values for -~. 
Now that an iterative process is required, there is no advan- 
tage in keeping a quadratic approximation when the actual 
constraint will work just as well. Replacing Eq. (20) with the 
active nonlinear constraint equations will remove any errors 
due to the approximation process. 

The stepping back procedure for violated constraints, 
described above, can also be a source of problems. With 
non-convex programming problems this procedure may lead 
to a situation where the algorithm cannot move away from a 
non-optimum design. Because the stepping back procedure 
assumed a straight line path between the two design points, it 
is possible, when backing out of a newly violated constraint, 
to move into the violated region of the constraint that was 
active at the beginning of the step. The procedure would then 
step back still further until all constraints are satisfied. It is 
poossible to end up with the same set of active constraints as 
at the start of the iteration. In this case the next iteration will 
produce the same design, which may be non-optimal. 

Two alternatives are readily apparent which may solve 
this problem. The first one is that when a constraint becomes 
violated, repeat the step but include the newly violated con- 
straint in the set of active constraints. The second alternative 
is to move to the point where the constraint is violated, and 
then iterate from there without stepping back. Of course, the 
violated constraint is added to the set of active constraints. 
Boston, et al. (1984) looked into this second alternative to 
some extent. They reported that it did not always work. 
However, it is not clear if it was the "no stepping back" that 
was the cause of the problems or if the second order approxi- 
mations to the constraints contributed to the difficulty. 

In summary, the Gauss nonlinearly constrained technique is 
very effective at solving quadratically constrained problems. 
No major difficulties appear to exist which would preclude it 
from solving problems with higher order constraints once the 
modifications discussed above are implemented. This method 
with the proposed modifications is currently the leading 
candidate as the best method for solving highly nonlinear 
mechanism design problems. 

3. RESULTS 

A verification of the effectiveness of the Gauss constrained 
method applied to problems with quadratic constraints is 
obtained by solving the Rosen-Suzuki test problem (Rqsen 
and Suzuki, 1965) 

minimize F (~') 2 + 2 2 2 =x~ x 2 + 2 x 3 + x 4 - 5 x ~ - 5 x 2 - 2 1 x 3 + 7 x 4  

g~(x )  =x~+xz+xz+x4+x~--x~+x3--x4--8z 2 3 z ~ 0  

g2(-x ) = x~ + 2x# + x# + 2x~- -x , - -x , - -  l OK O 

g3 (x') = 2 x [ + x # + x # + 2 x l - - x 2 - x , - 5 K O  

The optimum design for this problem is at -x'= [0, 1, 2, -1 ] .  
Two versions of the Gauss nonlinearly constrained tech- 

nique and the generalized reduced gradient method, identified 
as GRG, were used from four different starting points. One 
version of the Gauss nonlinearly constrained technique, 
identified as GNLC, uses the stepping back procedure, requir- 
es a feasible starting design and will always maintain a 
feasible design. The other version, identified an GNLC. NS, 
does not use the stepping back procedure and has no require- 
ment no the feasibility of the design at any stage of the 
optimization. The results are summarized in Table 1. It can 
easily be seen that the Gauss nonlinearly constrained tech- 
nique is much more efficient with respect to number of 
function evaluations than the generalized reduced gradient 
method. 

Table 1 Comparision of algorithms 

Starting Number of Function 
Algorithm design, -~0 iterations evaluations 

GNLC. NS 
GNLC. NS 
GNLC. NS 
GNLC. NS 
GNLC 
GNLC 
GNLC 
GRG 
GRG 
GRG 
GRG 

[0, o, o, o] 
[1,1,1,1] 
[2, 2, 2, 2] 

[0, o, r o] 
[0,0,0,0] 
[1, 1, 1, 1] 

[o, o, r o] 
[o,o,o,o] 
[1, i ,  i ,  i ]  
[2, 2, 2, 2] 

[0, o, ,/5, o] 

3 
5 
5 
3 

11 
11 
11 
9 

3 
3 
3 
4 
6 
6 
4 

106 
133 
144 
83 

4. CONCLUSIONS 

The optimization techniques developed in this research as 
extensions of the Gauss method to handle various types of 
constraints are effective approaches to reducing the number 
of analyses required to obtain an optimal design. As a result, 
the computational time for large problems should be reduced 
significalty. 
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